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1 Linear Elliptic PDEs
Let Ω ⊆ Rn be an open and bounded subset. A linear partial differential equation of second
order is an equation of one of the following forms:

(1) aij(x)∂iju(x) + bi(x)∂iu(x) + c(x)u(x) = f(x)

or

(2) (aij(x)∂iu(x))j + bi(x)∂iu(x) + c(x)u(x) = f(x)

for given functions aij, bi, c, f (i, j = 1, . . . , n) defined on Ω ⊆ Rn. We say that (1) is an
equation in nondivergence form, whereas (2) is in divergence form. Notice that if the coefficients
aij(x) are C1 functions then the two forms are equivalent.
Remark. We shall assume throughout the text that aij(x) = aji(x).

The lefthand side of either equation defines a partial differential operator L and we can
alternatively represent these equations as Lu = f . We call L a (linear) partial differential
operator of second order.

Definition. The operator L is elliptic if the functions aij(x) define a positive definite matrix
[aij(x)] . Alternatively, let λ(x),Λ(x) be the minimum and maximum eigenvalues of the matrix
[aij(x)] then for every ξ ̸= 0 we have:

(3) 0 < λ(x)|ξ|2 ≤ aij(x)ξiξj ≤ Λ(x)|ξ|2

If λ(x) ≥ λ0 > 0 for some constant λ0, L is called strictly elliptic. If the quotient Λ/λ is
bounded then L is uniformly elliptic. Lastly, if either λ = 0 or Λ = ∞ then L is degenerate
elliptic.

Example 1. (Laplace and Poisson’s Equations) The most basic elliptic equation we can get is
by setting aij(x) = δij, b

i, c, f ≡ 0 in (1). The resulting equation

(4) ∆u(x) = 0

is called Laplace’s Equation, where ∆ := ∂11 + . . . ∂nn. If we allow nonzero f(x), we get

(5) ∆u(x) = f(x)

which is Poisson’s equation. Both equations arise in physics usually related to diffusion pro-
cesses like heat and concentration, or potentials, like gravitational and electrostatic potentials.

Remark. Notice that ∆u(x) = div(∇u(x)), which is Laplace’s equation in divergence form.
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FIGURE 1 Real part of ez. FIGURE 2 Imaginary part of z2.

2 Harmonic functions
Definition. A classical solution u(x) of the elliptic equation Lu = f is a C2 function u :
Ω → R that satisfies the equation pointwise. A function u(x) is called harmonic in Ω if it is a
classical solution of the Laplace’s equation ∆u = 0 in Ω.

Example 2. Let h : Ω ⊆ C → C be a holomorphic function. Suppose h(z) = u(x, y)+iv(x, y),
where z = x+ iy and u, v : Ω ⊆ R2 → R are the real and imaginary parts of h(z) respectively.
Then the Cauchy-Riemann equations imply that both u and v are harmonic in Ω. For example,
take f(z) = ez then u(x, y) = Re(f(z)) = ex cos(y) is harmonic, see Figure 1 below.

Example 3. Set Ω = R2−{0} and consider the function u(x, y) = ln(x2+y2). One can easily
check that u is harmonic in Ω.

Example 4. More generally, in Rn any constant or linear function in Ω ⊆ Rn is harmonic, as it
is u(x) = |x|1−n/2 for n > 2.

Harmonic functions are homogeneous in the sense that it is the average of its values, more
precisely we have

Theorem 2.1. (Mean Value) Let u ∈ C2(Ω). Then u(x) is harmonic if and only if for any ball
BR(x) ⊂⊂ Ω, we have

(6) u(x) =

 
BR(x)

u(x) dx =

 
∂BR(x)

u ds.

Proof. (⇒) Define ϕ(r) :=
ffl
∂Br(x)

u(y) ds =
ffl
∂B1(0)

u(x + rz) ds. Taking the derivative we
have:

(7) ϕ′(r) =

 
∂B1(0)

∇u(x+ rz) · z ds =
 
∂Br(x)

∇u(y) · y − x

r
ds

Notice that ν = y−x
r

is normal to ∂Br(x), by the divergence theorem we have

(8) ϕ′(r) =

 
∂Br(x)

∇u(y) · ν ds =
 
∂Br(x)

∂u

∂ν
ds = r

n

 
Br(x)

∆u(y)dy = 0.
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thus ϕ(r) is constant. Letting r → 0 we get
(9) ϕ(r) = lim

r→0
ϕ(r) = u(x).

Additionally, using the above result and the use of polar coordinates

(10)
ˆ
Br(x)

u(y)dy =

ˆ ∞

0

(ˆ
∂Bt(x)

u ds
)

dt

gives that
ffl
BR(x)

u(x) dx =
ffl
∂BR(x)

u ds.
(⇐) The proof is by contradiction. Assume∆u(x) > 0 for some ball Br(x), then as before

(11) 0 = ϕ′(r) =
r

n

 
Br(x)

∆u(y)dy > 0

a contradiction.
The next theorem illustrates a direct consequence of the mean value property. Namely,

values of nonnegative harmonic functions are all comparable in a precise sense stated below.
Theorem 2.2. (Harnack’s inequality) Let u(x) be a harmonic function such that u(x) ≥ 0 for
every x ∈ Ω, and consider a connected subset U ⊂⊂ Ω. Then there is a constant C > 0,
depending only on U , such that
(12) sup

x∈U
u(x) ≤ C inf

x∈U
u(x)

Proof. It’s enough to find C > 0 such that

(13) 1

C
u(y) ≤ u(x) ≤ Cu(y)

for every x, y ∈ U and apply the definition of supremum/infimum. The idea is then prove this
fact in each ball and use the compactness of U .

Choose r > 0 and z ∈ Ω such that B4r(z) ⊂ Ω and consider x, y ∈ B4r(z). By the mean
value property we have:

u(x) =

 
Br(x)

u(p)dp ≤ 1

ωnRn

ˆ
B2r(z)

u(p)dp

u(y) =

 
B3r(y)

u(p)dp ≥ 1

ωn(3R)n

ˆ
B2r(z)

u(p)dp
(14)

It follows that

(15) 1

3n
u(y) ≤ u(x) ≤ 3nu(y),

so the result is valid inside balls. But then we are done, since we can find r and cover U with
finitely many balls {Bi}Ni=1 of radius r such thatBi∩Bi+1 ̸= ∅. Applying the previous estimate
in each ball we get

(16) 1

3nN
u(y) ≤ u(x) ≤ 3nNu(y).

Now take C = 3nN .
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FIGURE 3 u(x, y) = ln(x2 + y2). FIGURE 4 The annulus 1
e
≤ x2 + y2 ≤ 1.

3 Maximum and Minimum Principles
An interesting property of harmonic functions, and more generally elliptic partial differential
equations, is the existence of some type of maximum(minimum) principle, which says that the
maximum(minimum) is achieved at the boundary.

Theorem 3.1. (Strong Maximum/Minimum Principle) Let u(x) be harmonic in Ω and continu-
ous on Ω. If there’s a point a ∈ Ω such that u(a) = maxx∈Ω u(x) (minx∈Ω u(x)), then u(x) is
constant.

Proof. The proof is again by contradiction. Suppose the maximum is achieved at a point a ∈ Ω
and set M := u(a). Consider the non empty set O := {x ∈ Ω | u(x) = M}. By the continuity
of u(x), O is closed. Now, by the mean value theorem, we have:

(17) M = u(a) =

 
BR(a)

u(x) dx ≤ M

for someR > 0, the equality holds if and only u ≡ M inBR(x), henceO is open and sinceΩ is
connected we must have Ω = O. A similar argument can be given in case u(a) = minx∈Ω u(x).

A consequence of the max/min principle is a global estimate for harmonic functions. In
fact, we’ll see this principles generalizes to other type of elliptic equations as well.

Corollary 1. (Weak Maximum/Minimum Principle) Let u(x) ∈ C2(Ω) ∩ C0(Ω) be harmonic
in Ω. Then

(18) max
x∈Ω

u(x) = max
x∈∂Ω

u(x)

(
min
x∈Ω

u(x) = min
x∈∂Ω

u(x)

)
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so that

(19) min
x∈∂Ω

u(x) ≤ u(x) ≤ max
x∈∂Ω

u(x)

Example 5. Consider the harmonic function u(x, y) = ln(x2 + y2) over the domain Ω =
{(x, y) ∈ R2 | 1

e
< x2 + y2 < 1}. According to the strong max/min principle it should achieve

its maximum and minimum values at the boundary of Ω. Indeed, as shown in Figure 3, the
maximum value is 0 and the minimum is −1, both achieved at the boundary of the annulus.

The following comparison principle characterizes harmonic functions by their boundary
values. Namely, every harmonic function is uniquely defined by its boundary behavior.
Corollary 2. (Comparison Principle) Let u(x), v(x) ∈ C2(Ω)∩C0(Ω) be two harmonic func-
tions in Ω such that u(x) = v(x) for x ∈ ∂Ω. Then u ≡ v in Ω.
Proof. Set w := u− v and apply Corollary 1 to get w ≡ 0 in Ω.

Next we discuss the regularity of harmonic functions. More precisely, given that u(x) ∈ C2

is harmonic, can we somehow show that u(x) is in fact C3(Ω)? Or maybe even C∞? In fact,
the latter is true as the following theorem shows (actually the theorem is slightly stronger).
Theorem 3.2. (Regularity) Any continuous function u(x) ∈ C0 that satisfies the mean value
property 6 is smooth, i.e. u(x) ∈ C∞.
Proof. The proof is by mollification, a standard technique in PDEs that proves a result first
for smooth functions and then using approximation techniques, proves the result to a broader
class of functions. In this particular case, the function itself is already smooth enough, hence
coincides with its mollification. This very simple but powerful technique is used in many other
PDEs not necessarily elliptic ones, so it is of independent interest. See for example [?] for
an example of the use of mollifiers to prove local existence of solutions to the Navier-Stokes
equations, a parabolic system of equations.

The idea of the proof is ‘to mollify’ u(x) by taking the convolution of it with a well behaved
function called a mollifier (See the Appendix). Let η(x) ∈ C∞(Rn) be the standard mollifier
and set uϵ(x) := (u ∗ ηϵ)(x). By the properties of mollifiers, we know that uϵ ∈ C∞(Ωϵ), we
claim that in fact u ≡ uϵ for each ϵ > 0. Take x ∈ Ωϵ, then:

uϵ(x) =

ˆ
Bϵ(x)

ηϵ(x− y)u(y) dy

=
1

ϵn

ˆ
Bϵ(x)

η

(
|x− y|

ϵ

)
u(y) dy (now we switch to polar coordinates)

=
1

ϵn

ˆ ϵ

0

η
(r
ϵ

)(ˆ
∂Br(x)

u(y) ds
)

dr

= u(x)

ˆ
Bϵ(0)

ηe(y) dy

= u(x).

(20)
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FIGURE 5 uϵ(x) for ϵ = 1, .75, .5, .25 for
the sawtooth function

FIGURE 6 The Sawtooth function u(x) =
4|x− ⌊x+ 3/4⌋+ 1/4| − 1.

The regularity of solutions to partial differential equations is a major topic in the field of
differential equations. Most equations that we will discuss in this text actually have at least
Holder continuous solutions under certain conditions on the boundary ∂Ω. On the other hand,
there are an abundant number of counterexamples to different types of regularites that we will
also discuss.

Notice that if u(x) is harmonic for x ∈ Ω then ui(x) is also harmonic for i = 1, . . . , n,
indeed

(21) ∆u(x) = 0 ⇐⇒ ∂i(∆u(x)) = 0 ⇐⇒ ∆ui(x) = 0

The next theorem, which is yet another consequence of the mean value theorem, gives an esti-
mate of the derivative locally in terms of the L1 norm of u(x)
Theorem 3.3. Let u(x) be harmonic in Ω. Then for every ballBr(a) ⊂ Ω and every multiindex
α such that |α| = k, the following estimate is true

(22) |Dαu(a)| ≤ Ck

rn+k
∥u∥L1(Br(a))

with C0 =
1
ωn

and Ck =
(2n+1nk)k

ωn

Proof. The proof is by induction on k. The case k = 0 is immediate from the mean value
theorem. Let k = 1, and consider the mean value for the ball B r

2
(a):

|ui(a)| =

∣∣∣∣∣
 
Br/2(a)

ui(y) dy
∣∣∣∣∣

=
2n

ωnrn

∣∣∣∣∣
ˆ
∂Br/2(a)

uνi ds
∣∣∣∣∣

≤ 2n

r
∥u∥L∞(∂Br/2(a))

(23)

For every x ∈ ∂Br/2(a), notice that Br/2(x) ⊂ Br(a), hence

(24) |u(x)| ≤ 2n

ωnrn
∥u∥L1(Br(a))

,
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which combined with the above inequality gives

(25) |Dαu(a)| ≤ 2n+1n

ωnrn+1
∥u∥L1(Br(a))

proving the case k = 1. The general case is proved analogously, suppose the result is valid for α
with |α| = k− 1, we prove the result for |α| = k. Fix α withDαu = (Dβu)i, with |β| = k− 1.
By the computations above, we deduce that

(26) |Dαu(a)| ≤ nk

r

∥∥Dβu
∥∥
L∞(∂Br/k(a))

As before, if x ∈ ∂Br/k(a) then B (k−1)r
k

(x) ⊂ Br(a) and by hypothesis

(27) |Dβu(x)| ≤ (2n+1n(k − 1))k−1

ωn

(
k−1
k
r
)n+k−1

∥u∥L1(Br(a))
.

Combining everything together we conclude

(28) |Dαu(a)| ≤ (2n+1nk)k

ωnrn+k
∥u∥L1(Br(a))

.

As a direct consequence we get an analogous Liouville’s theorem for harmonic functions,
namely
Theorem 3.4. (Liouville’s theorem) Any bounded u : Rn → R harmonic function is constant.
Proof. Just notice that if u(x) is bounded then ∥u∥L1(Br(a))

≤ ∥u∥L∞(Rn) < ∞ and let r → ∞
in the previous theorem with k = 1 to conclude that Du ≡ 0, hence u is constant.

We end this section with a stronger version of theorem 3.2.
Theorem 3.5. If u(x) is harmonic in Ω then u(x) is in fact analytic in Ω.
Proof. The proof is done using the definition of analyticity. Namely, we must show that given
a point a ∈ Ω, the Taylor series of u(x),

∑
α

Dαu(a)
α!

(x− a)α, converges to u(a).
Choose r such that 4r = dist(a, ∂Ω). Then for any x ∈ Br(a) we have Br(x) ⊂ B2r(a) ⊂

Ω, moreover by the local derivative estimate 22, and letting |α| = k, we have the bound

∥Dαu∥L∞(Br(a))
≤ (2n+1nk)k

ωnrn+k
∥u∥L1(B2r(a))

≤
∥u∥L1(B2r(a))

ωnrn

(
2n+1n

r

)k

kk

≤
∥u∥L1(B2r(a))

ωnrn

(
2n+1n2e

r

)k

α!

≤ C

(
2n+1n2e

r

)k

α!

(29)
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where we have used the fact that kk ≤ ekk! and k! ≤ nkα!.
Nowwe claim that the Taylor series

∑
α

Dαu(a)
α!

(x−a)α converges in the ball |x−a| ≤ r
2n+2n2e

.
Indeed, according to Taylor’s theorem, the remainder is given by

(30) RN(x) := u(x)−
N−1∑
k=0

∑
|α|=k

Dαu(a)

α!
(x− a)α =

∑
|α|=N

Dαu(a+ t(x− a))

α!
(x− a)α

for some t ∈ [0, 1].
By the discussion above, we must have

|RN(x)| ≤ C
∑
|α|=N

(
2n+1n2e

r

)N

α!
( r

2n+2n2e

)N

≤ CnN 1

(2n)N
→ 0 as N → ∞

(31)

4 Green’s functions
In this section we are interested in obtaining a representation formula for harmonic functions.

We start by recalling the Green’s identities, which are a consequence of the Divergence
theorem in Calculus.

Let u, v ∈ C2(Ω) and Ω be a bounded domain with C1 boundary, then:ˆ
Ω

v∆u dx+
ˆ
Ω

Du ·Dv dx =

ˆ
∂Ω

v
∂u

∂ν
ds (Green’s first identity)

ˆ
Ω

(v∆u− u∆v) dx =

ˆ
∂Ω

(
v
∂u

∂ν
− u

∂v

∂ν

)
ds (Green’s second identity)

(32)

We plan to use the above identities when v is harmonic and u is any other function. In order
to accomplish that, we must find an explicit harmonic function. One way we can do this is
to find radially symmetric solutions v(x) = f(|x|), that is to say, one dimensional functions
depending only on r = |x|. Plugging f(r(x)) into the Laplace’s equation, we can easily obtain
the following functions:

(33) f(r) =

{
r2−n, n > 2

log(r), n = 2.

Notice that f(r) is singular at 0. It is convenient to shift the singularity to fixed point y ∈ Ω
and consider f(|x− y|), more precisely, we define the normalized fundamental solution of the
Laplace’s equation to be

(34) Γ(x− y) =

{
1

n(2−n)ωn
|x− y|2−n, n > 2

1
π
log(|x− y|), n = 2.
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Since Γ is singular whenever x = y, we can’t plug it in directly into 32, unless we shrink the
domain and consider Ω−Br(y) instead, for some small r > 0. If we do that in Green’s second
identity, we obtain

(35)
ˆ
Ω−Br(y)

Γ∆u dx =

ˆ
∂Ω

(
Γ
∂u

∂ν
− u

∂Γ

∂ν

)
ds+

ˆ
∂Br(y)

(
Γ
∂u

∂ν
− u

∂Γ

∂ν

)
ds.

The idea now is to see what happens when we let r → 0.

Lemma 4.1.
´
∂Br(y)

(
Γ∂u

∂ν
− u∂Γ

∂ν

)
ds → u(y) as r → 0.

Proof. Notice that
ˆ
∂Br(y)

Γ
∂u

∂ν
ds = Γ(r)

ˆ
∂Br(y)

∂u

∂ν
ds

≤ nωnr
n−1Γ(r) sup

Br(y)

|Du|,

which goes to 0 as r → 0.
Moreover,

ˆ
∂Br(y)

u
∂Γ

∂ν
ds = Γ′(r)

ˆ
∂Br(y)

u ds = −1

nωnrn−1

ˆ
∂Br(y)

u ds

As r → 0 the latter integral goes to −u(y).

Therefore, when r approaches zero in 35, we obtain a nice formula for any function in terms
of the fundamental solution, more precisely we have

Theorem 4.2. (Green’s representation formula) Let u ∈ C2(Ω) and Ω be a bounded domain
with C1 boundary. For every y ∈ Ω, the following formula holds:

(36) u(y) =

ˆ
∂Ω

(
u
∂Γ

∂ν
− Γ

∂u

∂ν

)
ds+

ˆ
Ω

Γ(x− y)∆u(x) dx.

The following corollaries is immediate:

Corollary 3. Let u ∈ C2(Ω) and Ω be a bounded domain with C1 boundary. If u(x) has
compact support then:

u(y) =

ˆ
Ω

Γ(x− y)∆u(x) dx.

If u(x) is harmonic then

u(y) =

ˆ
∂Ω

(
u
∂Γ

∂ν
(x− y)− Γ(x− y)

∂u

∂ν

)
ds.
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Now suppose v(x) ∈ C1(Ω) ∩ C2(Ω) is harmonic in Ω. Using Green’s second identity 32
we obtain:

−
ˆ
∂Ω

(
u
∂v

∂ν
− v

∂u

∂ν

)
ds =

ˆ
Ω

v∆u dx.

SetG(x, y) = Γ(x− y)+ v(x) and supposeG(x, y) ≡ 0 for every fixed y. If we add the above
expression to 36 we have

(37) u(y) =

ˆ
∂Ω

u
∂G

∂ν
ds+

ˆ
Ω

G∆u dx.

The functionG(x, y) is called theGreen’s function for the domainΩ. Notice that by the compar-
ison principle,G(x, y) is uniquely defined and in case u(x) is harmonic we get a representation
of u in terms of its boundary values only.

Example 6. (The Green’s function for a ball) By definition, G(x, y) = Γ(x− y)+ v(x) and all
we need to do is to find v(x) by solving the following problem for a fixed y:

(38)
{
∆v(x) = 0, in BR(0)

v(x) = −Γ(x− y), on ∂BR(0)

Now, notice that we simply can’t define v(x) = −Γ(x− y) everywhere because v(x) would be
singular at y, hence can’t be harmonic there. So we have to find a way of shifting the singularity
to a point outside BR(0), one way of doing this is by a sort of reflection. Namely, set

y =
R2

|y|2
y

and define

v(x) =

{
−Γ( |y|

R
(x− y)), if y ̸= 0

−Γ(R), if y = 0

Clearly, this v(x) satisfies 38 and the Green’s function for the ball of radius R is

(39) G(x, y) =

{
Γ(x− y)− Γ( |y|

R
(x− y)), if y ̸= 0

Γ(x)− Γ(R), if y = 0

Notice that if u(x) ∈ C2(Ω) ∩ C1(Ω) is harmonic then using the explicit expression above in
37 we obtain the Poisson Integral formula:

(40) u(y) =
R2 − |y|2

nωnR

ˆ
∂BR

u(x)

|x− y|n
ds

The above integral depends only on the boundary values, in fact, u(x) as defined above
solves the Dirichlet problem for the ball.
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Theorem 4.3. Given φ ∈ C0(∂BR), the function defined by u(x) = R2−|x|2
nωnR

´
∂BR

φ(y)
|y−x|n ds is

harmonic in BR, continuous in BR and u
∂BR

= φ.

Proof. We already know that u(x) is harmonic, the only thing left to prove is the continuity.
For simplicity, let’s set

K(x, y) =
R2 − |x|2

nωnR|x− y|n
,

also called the Poisson Kernel.
Notice that by taking u ≡ 1 in the Poisson Integral formula, we have thatˆ

∂BR

K(x, y) ds = 1

Now, take a ∈ ∂BR. Since φ(x) is continuous at a, given ϵ > 0 we can find δ > 0 such that
|x− a| < δ implies |φ(x)− φ(a)| < ϵ/2. Consider now |x− a| < δ

2
, we have

|u(x)− u(a)| =
∣∣∣∣ˆ

∂BR

K(x, y)(φ(x)− φ(a)) ds
∣∣∣∣

≤
ˆ
|y−a|≤δ

K(x, y)|φ(x)− φ(a)| ds

+

ˆ
|y−a|>δ

K(x, y)|φ(x)− φ(a)| ds

≤ ϵ

2
+

2 ∥φ∥∞ (R2 − |x|2)Rn−2

(δ/2)n

Since we can choose x very close to a, |x|2 can be as close as we like to R2. We conclude that
|u(x)− u(a)| < ϵ and u(x) is continuous at a.

5 The Dirichlet Problem
In this section we generalize the results of the previous section and solve the Dirichlet problem
for a general bounded domainΩ. There are different ways of approaching this problem, we will
choose the approach that uses the maximum principle as the main tool, the so called Perron’s
method, since it generalizes easily to other types of elliptic equations, most notably to nonlinear
ones.

Given a bounded domain Ω and g ∈ C0(∂Ω), the (classical) Dirichlet problem is to find a
function u(x) that solves the following set of conditions

(41)
{
∆u(x) = 0 in Ω

u ≡ g on ∂Ω.

We’ve already solve theDirichlet problem in caseΩ is a ball (see 4.3). Pictures 7 and 8 illustrates
the solution of the classical Dirichlet problem with Ω = B1(0) ⊆ R2, when g(x, y) = x2 and
g(x, y) = xy2 respectively. For the general case, we need a couple of definitions first.



12

FIGURE 7 Solution with g(x, y) = x2.
FIGURE 8 Solution with g(x, y) = xy2.

Definition. A continuous function u(x) ∈ C0(Ω) is called subharmonic (in the viscosity sense)
if for every function v(x) ∈ C2(Ω) such that v touches u from above at x0 (that is, v(x0) = u(x0)
and v ≥ u in Ω), we have −∆v(x0) ≤ 0. Analogously, we define superharmonic functions as
functions that when touched from below by a C2 function v imply −∆v(x0) ≥ 0. A function
is called harmonic if it’s both sub- and superharmonic.

It follows directly form the definition that the maximum of subharmonic function is still
subharmonic, that is, if u1(x), . . . , um(x) are subharmonic then

u(x) := max{u1(x), . . . , um(x)}

is also subharmonic. What if the sequence of functions uj is bounded above? Is the sup of
subharmonic functions still subharmonic? It turns out that something better is true:

Theorem5.1. Given g(x) ∈ C0(∂Ω), letSg := {u(x) subharmonic inΩ | u(x) ≤ g(x) on ∂Ω}.
Set

u(x) := sup
v∈Sg

v(x)

Then u(x) is harmonic in Ω.

Proof. By definition of sup, if we fix a ∈ Ω then u(a) is an accumulation point and as such
there is a sequence of functions vj(a) such that vj(a) → u(a). Since vj ∈ Sg, the sequence vj
is bounded from above, namely by sup g. Without loss of generality, we may also assume that
it’s also bounded from below (if it’s not the case, consider max(vj, inf g)) and hence bounded.

Now, choose R > 0 such that the ball B := BR(a) is compactly contained in Ω. Let Vj(x)
be the harmonic lifting of vj(x) in B, that is, the unique harmonic function in B that agrees
with vj(x) on the boundary ∂B and Vj(x) = vj(x) for x ∈ Ω − B. Since vj are subharmonic,
Vj are also subharmonic and moreover Vj ∈ Sg.

Notice that, by construction, each Vj is harmonic inB, so by Arzelà-Ascoli theorem, taking
a subsequence if necessary, Vj → v locally uniformly and v is harmonic in B.

By definition, we have v(a) = u(a) and v(x) ≤ u(x). Since v is harmonic in B, the proof
then follows from the following claim:
Claim. v(x) ≡ u(x) in B.
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If the claim is false then there is a point b ∈ B such that v(b) < u(b), using the definition of
sup again, there is a subharmonic function h ∈ Sg such that v(b) < h(b). Set wj := max{Vj, h}
then, as before, we may assume wj is bounded with harmonic lifting Wj converging locally
uniformly to a harmonic function w. Moreover, v ≤ w ≤ u in B and v(a) = w(a) = u(a).
By the maximum principle harmonic functions, we have v = w in B, a contradiction since
v(b) < h(b).

Remark. The function u(x) above is sometimes called the Perron solution.
The Perron solution is a strong candidate for the solution of the classical Dirichlet Problem:

It’s harmonic and it’s very close to g, by definition. By the comparison principle, if it is a
solution, it’s unique.

It turns out that it’s not always true that the Dirichlet Problem has a solution. In the end, the
shape or geometry of ∂Ω is the deciding factor of whether or not we will have u(x) = g(x) on
∂Ω.

Definition. A point a ∈ ∂Ω is called a regular point if there is a nonnegative superharmonic
function w(x) ∈ C0(Ω) touching a from above, that is, w(a) = 0 and w > 0 in Ω− a.

We call such w(x), a barrier at a ∈ ∂Ω. Hence, a point x is regular if there is a barrier at x.

Lemma 5.2. Let u(x) be the Perron solution and g ∈ C0(∂Ω) as before. If a ∈ ∂Ω is a regular
point then lim

x→a
u(x) = g(a).

Proof. Let ϵ > 0 be given and set A := sup |g|. Since a is regular there is a barrier w(x)
touching a from above. By the continuity of g and the definition of barrier, we can find k > 0
and δ > 0 such that

|g(x)− g(a)| < ϵ if |x− a| < δ

and
kw(x) ≥ 2M if |x− a| ≥ δ

The function g(a) + ϵ + kw(x) ≥ g(x) is superharmonic and g(a) − ϵ − kw(x) ≤ g(x) is
subharmonic, hence using the definition of u(x) we have

g(a)− ϵ− kw(x) ≤ u(x) ≤ g(a) + ϵ+ kw(x),

which gives |u(x)−g(a)| ≤ ϵ+kw(x). Since kw → 0 as x → a, we conclude that lim
x→a

u(x) =

g(a).

We finally have

Theorem 5.3. The Classical Dirichlet problem is solvable in Ω if and only if every boundary
point is regular.

Proof. If the boundary points are regular, the Perron solution solves the Classical Dirichlet
Problem. Conversely, suppose the Classical Dirichlet problem is solvable and let a be a bound-
ary point. It’s enough to find a barrier at a. Consider g(x) = |x− a| on ∂Ω, and let w(x) be the
harmonic function with boundary values g(x) then w(x) is a barrier at a.
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There are alternatives for explicitly finding a barrier.

Definition. A point a ∈ ∂Ω satisfies the exterior sphere condition if there is a ballBR(b) ⊂ Ω
such that BR(b) ∩ Ω = a.

Theorem 5.4. If a point a ∈ ∂Ω satisfies the exterior sphere condition then it’s regular.

Proof. Indeed, using the fact that −|x| is superharmonic, we can find BR(b) ⊂ Ω such that

w(x) =

{
Rn−2 − |x− b|2−n for n ≥ 3.

log |x−b|
R

for n = 2.

defines a barrier at a.

Corollary 4. The Classical Dirichlet problem is solvable for any domain whose boundary is at
least C2.

Proof. Every boundary ∂Ω that is at least C2 satisfies the exterior sphere condition and hence
has all of its points regular. This can be seen by using the fact that C2 functions have a Taylor
expansion up to second order and the hessian is diagonalizable by the symmetry of the second
derivatives.

Remark. Notice that the corollary uses the symmetry of the second derivatives which is not
necessarily true for C1 functions. In fact the above is optimal and the Corollary is actually false
for C1 domains in general.


	Linear Elliptic PDEs
	Harmonic functions
	Maximum and Minimum Principles
	Green's functions
	The Dirichlet Problem

